Diagnosing Near-Surface Model Errors with FV3-LAM Physics Schemes for Multi-Physics RRFS Ensemble

CIWRO Workshop on Forecast Applications Improvements

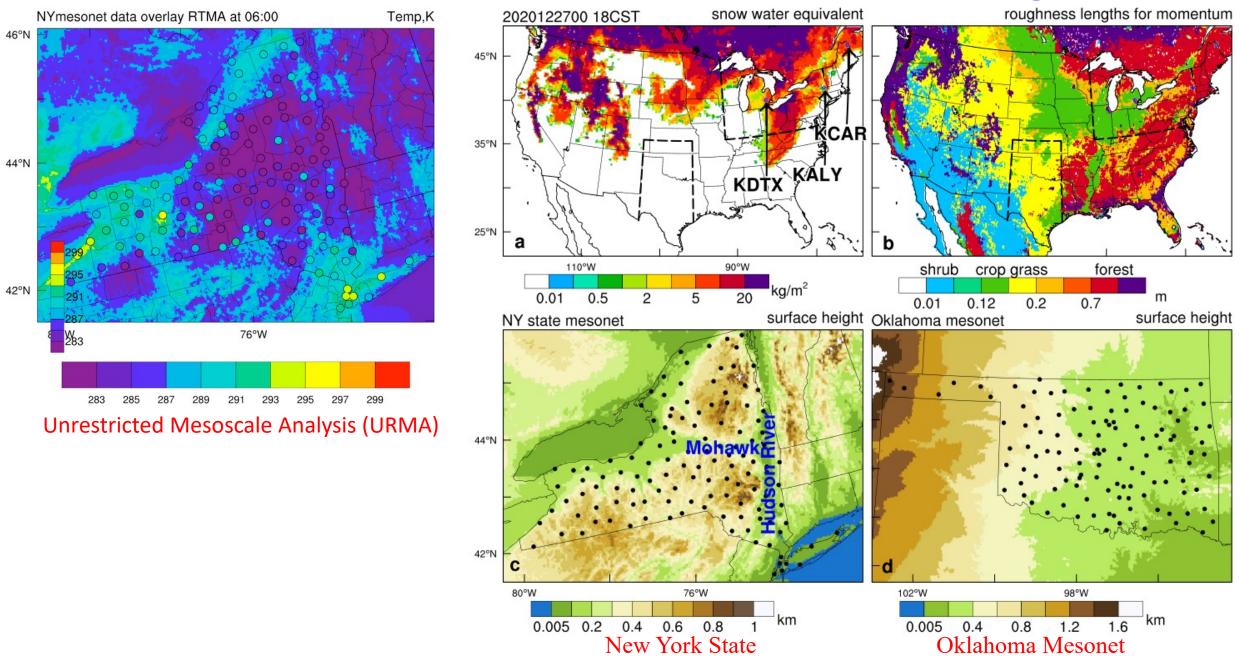
September 30, 2022, 12pm

Xiao-Ming Hu Center for Analysis and Prediction of Storms (CAPS) at University of Oklahoma (OU)

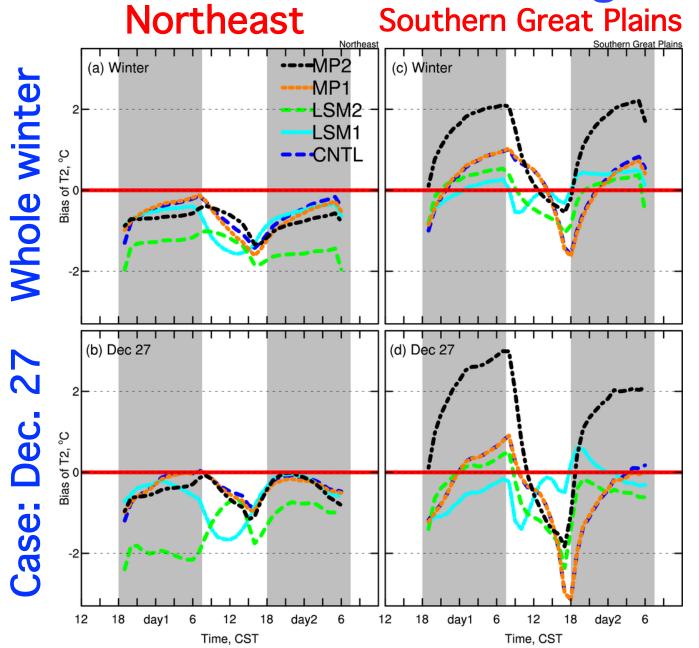
Co-Authors: Jun Park, Timothy Supinie, Nathan A. Snook, Ming Xue, Keith Brewster Jerald Brotzge, Jacob R. Carley

5 physics suites in FV3-LAM for Rapid Refresh Forecasting System (RRFS) ensemble

T • (3.61 3 4	DDI	a c	TOM	C	oct	obe	er 2	202	20
Experiment names	Suite Characteristic	Microphysics	PBL	Surface Layer	LSM	S	М	T١	ר w נ	_	S
CNTL	RRFS-control-like	Thompson	MYNN (<u>Olson et</u> <u>al., 2019a;</u> <u>Olson et al.,</u> <u>2019b</u>)	MYNN (<u>Nakanishi</u> <u>& Niino,</u> 2009)	NOAH (Chen & Zhang, 2009)	18 25	19 26	13 1 20 2 27 2	7 8 14 1 21 2 28 2	3 9 5 1(2 2: 9 3() 10 5 17 3 24 0 31
LSM1	HRRR-like (Benjamin et al., 2016)	Thompson	MYNN	MYNN	RUC (Smirnova et al., 2016; Smirnova et al., 2000)	S 3	M 4	_	W 1	F F 1 7 8	5 2 3 9
LSM2	future GFS-like	Thompson	TKE- EDMF (<u>Han &</u> <u>Bretherton,</u> 2019)	GFS (<u>Zheng et</u> <u>al., 2012</u>)	NOAH-MP (<u>Niu et al., 2011</u>)	17	18 25	12 1 19 2 26 2	20 2 27 2	1 22 8 <mark>2</mark> 9	2 23 9 30
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH			•			
MP2	HWRF-like HAFS-like (Biswas et al., 2018)	Ferrier-Aligo	K-EDMF (<u>Han et al.,</u> 2016)	GFS (<u>Zheng et</u> al., 2012)	NOAH			l 1 th Sup			

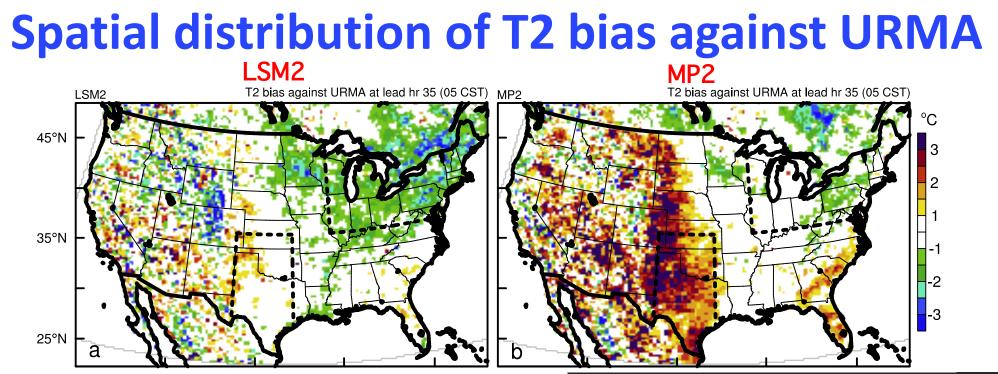

ber 2020					No	ove	em	be	er 2	20	20	
Т	W	Т	F	S		S	М	Т	W	Т	F	S
		1	2	3		1	2	3	4	5	6	7
6	7	8	9	10		8	9	10	11	12	13	14
.3	14	15	16	17		15	16	17	18	19	20	21
20	21	22	23	24		22	23	24	25	26	27	28
27	28	29	30	31		29	30					
iary 2021 Feb												
ıa	ry	2()2:	1		Fe	eb	rua	ary	/ 2	02	1
ıa ⊤	ry w	20 T)2: F	1 S		Fe	eb м	rua T	ary w	/ 2 T	02 F	1 s
Т	W	20 T						rua T		/ 2 T 4		
T 5	-	2(T 7	F	S			М	Т	W	Т	F	S
Т	W	Τ	F 1 8	S 2		S 7	M 1 8	T 2 9	W 3 10	T 4 11	F 5 12	S 6 13
T 5 12	W 6	T 7 14	F 1 8 15	S 2 9 16		S	M 1	T 2 9 16	W 3 10 17	T 4 11 18	F 5 12 19	5 6 13 20
T 5 12	W 6 13	T 7 14 21	F 1 8 15 22	S 2 9 16 23		S 7	M 1 8	T 2 9 16	W 3 10 17	T 4 11	F 5 12 19	5 6 13 20

20	December 2020								
S	S	М	Т	W	Т	F	S		
7			1	2	3	4	5		
14	6	7	8	9	10	11	12		
21	13	14	15	16	17	18	19		
28	20	21	22	23	24	25	26		
	27	28	29	30	31				
1		Ma	arc	h :	20	21			
	S	Мa м	arc T	h 2 w	20 т	21 F	S		
1 5 6									
S		М	Т	W	Т	F	S		
S 6	S	M 1	T 2	W 3 10	T 4 11	F 5 12	S 6		
S 6 13	S 7	M 1 8 15	Т 2 9	W 3 10 17	T 4 11 18	F 5 12	S 6 13		

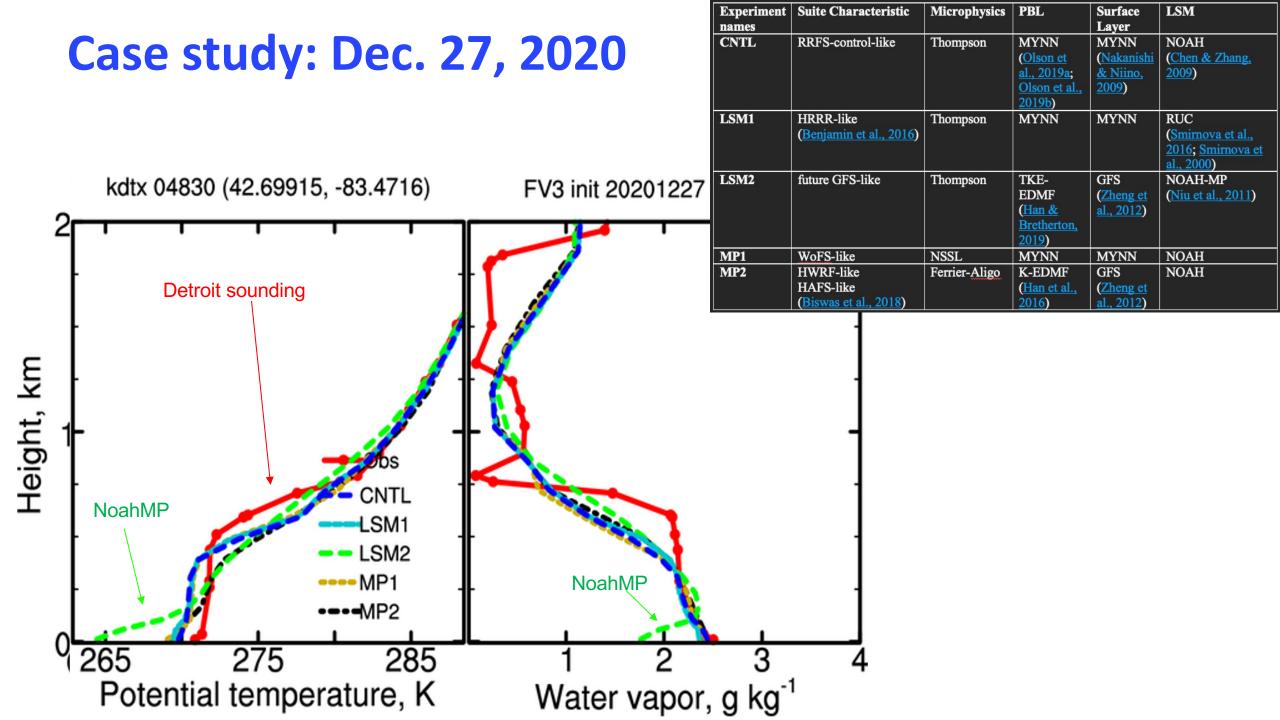

lydrometeorology Testbed (HMT) 1th Winter Weather Experiment (2020-21) Supinie et al. (2022, MWR)

relatively-well understood and operationally hardened, should thus be relatively easy to maintain in an operational setting.

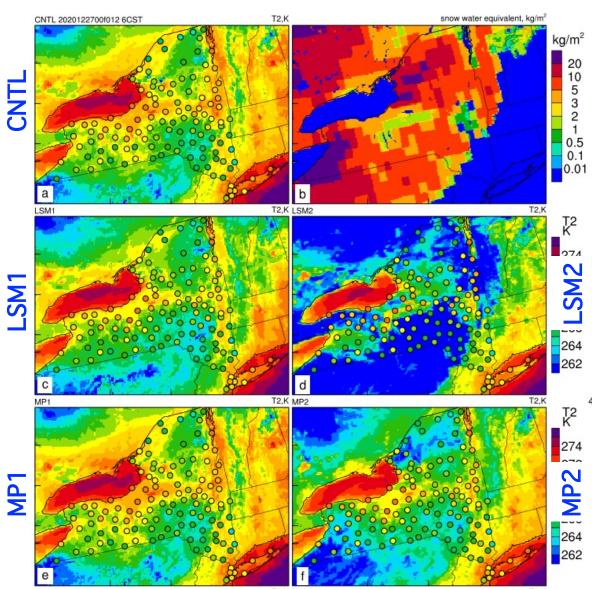
Observations for evaluation: URMA, Mesonet, Soundings



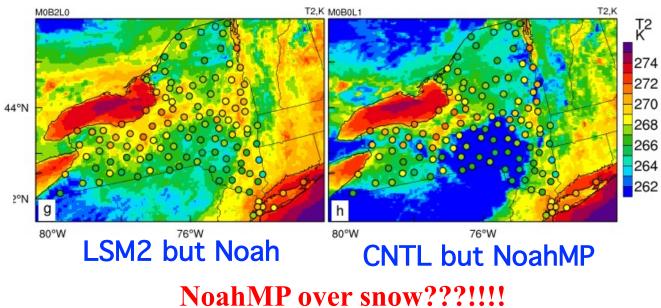
T2 bias against URMA

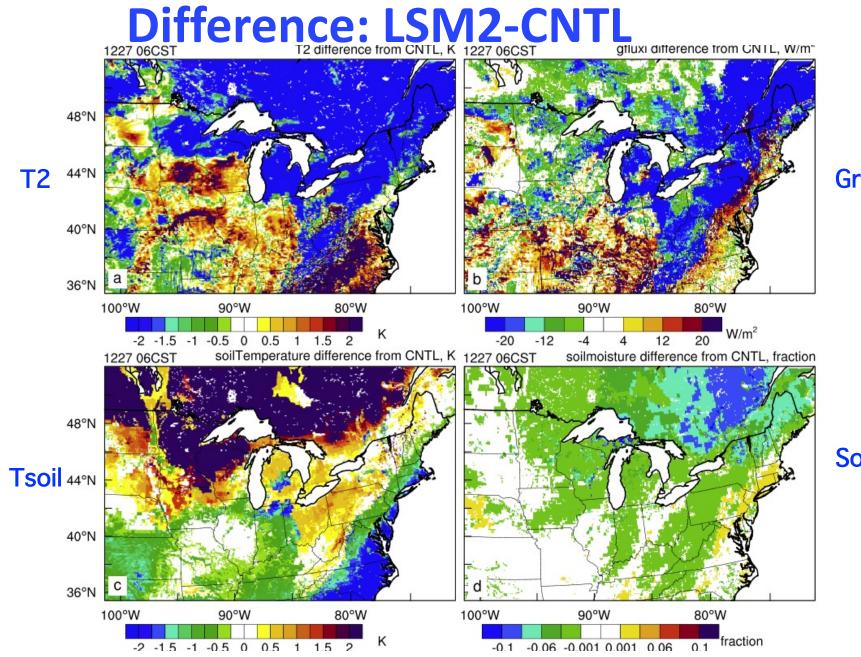

- Cold bias from LSM2 over Northeast
- Warm bias from MP2 over Southern Great Plains

Experiment names	Suite Characteristic	Microphysics	PBL	Surface Layer	LSM
CNTL	RRFS-control-like	Thompson	MYNN (<u>Olson et</u> <u>al., 2019a;</u> <u>Olson et al.,</u> 2019b)	MYNN (<u>Nakanishi</u> <u>& Niino,</u> 2009)	NOAH (<u>Chen & Zhang</u> , 2009)
LSM1	HRRR-like (Benjamin et al., 2016)	Thompson	MYNN	MYNN	RUC (Smirnova et al., 2016; Smirnova et al., 2000)
LSM2	future GFS-like	Thompson	TKE- EDMF (<u>Han &</u> <u>Bretherton,</u> 2019)	GFS (Zheng et al., 2012)	NOAH-MP (Niu et al., 2011)
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH
MP2	HWRF-like HAFS-like (Biswas et al., 2018)	Ferrier-Aligo	K-EDMF (<u>Han et al.,</u> 2016)	GFS (<u>Zheng et</u> <u>al., 2012</u>)	NOAH



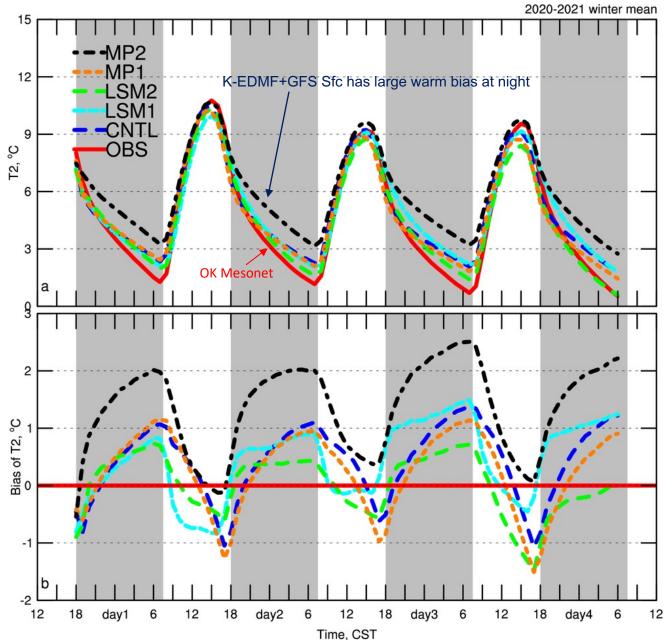
- Cold bias from LSM2 over Northeast
- Warm bias from MP2 over Southern Great Plains


Experiment names	Suite Characteristic	Microphysics	PBL	Surface	LSM
CNTL	RRFS-control-like	Thompson	MYNN (Olson et al., 2019a; Olson et al., 2019b)	Layer MYNN (<u>Nakanishi</u> <u>& Niino,</u> 2009)	NOAH (Chen & Zhang, 2009)
LSM1	HRRR-like (Benjamin et al., 2016)	Thompson	MYNN	MYNN	RUC (Smirnova et al., 2016; Smirnova et al., 2000)
LSM2	future GFS-like	Thompson	TKE- EDMF (<u>Han &</u> <u>Bretherton,</u> 2019)	GFS (<u>Zheng et</u> <u>al., 2012</u>)	NOAH-MP (<u>Niu et al., 2011</u>)
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH
MP2	HWRF-like HAFS-like (Biswas et al., 2018)	Ferrier-Aligo	K-EDMF (<u>Han et al.,</u> 2016)	GFS (<u>Zheng et</u> al., 2012)	NOAH


Diagnose cold bias from NoahMP

Experiment	Suite Characteristic	Microphysics	PBL	Surface	LSM
names				Layer	
CNTL	RRFS-control-like	Thompson	MYNN	MYNN	NOAH
			(Olson et	(Nakanishi	(Chen & Zhang,
			al., 2019a;	<u>& Niino,</u>	<u>2009</u>)
			Olson et al.,	<u>2009</u>)	
			<u>2019b</u>)		
LSM1	HRRR-like	Thompson	MYNN	MYNN	RUC
	(Benjamin et al., 2016)				(Smirnova et al.,
					2016; Smirnova et
					<u>al., 2000</u>)
LSM2	future GFS-like	Thompson	TKE-	GFS	NOAH-MP
			EDMF	(Zheng et	(Niu et al., 2011)
			<u>(Han &</u>	<u>al., 2012</u>)	
			Bretherton,		
			<u>2019</u>)		
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH
MP2	HWRF-like	Ferrier-Aligo	K-EDMF	GFS	NOAH
	HAFS-like		(Han et al.,	(Zheng et	
	(Rigwag et al. 2018)		2016	al 2012)	

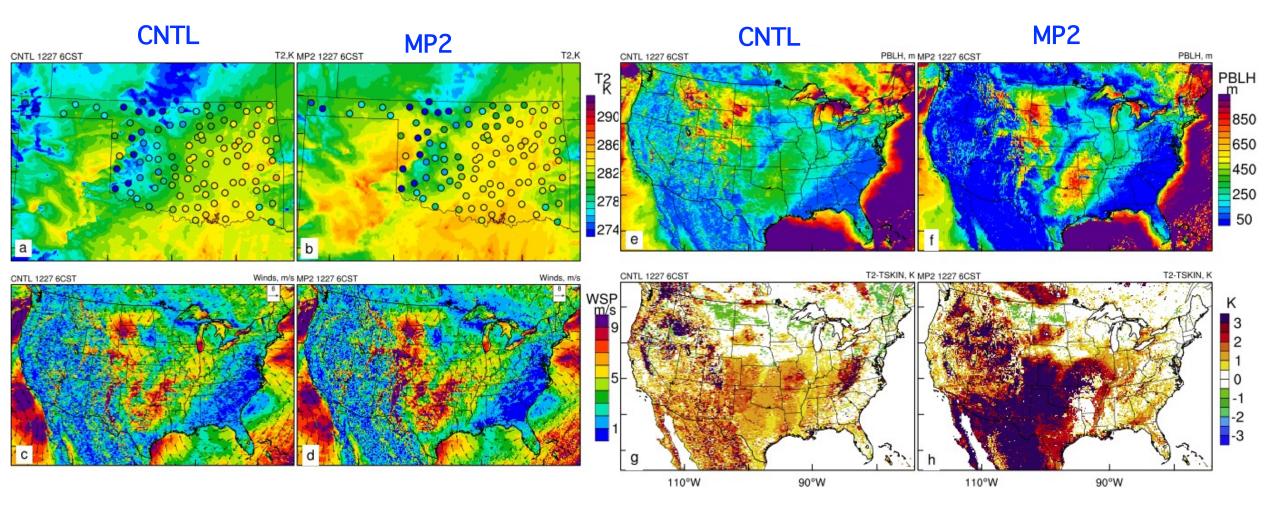
Circles: New York State Mesonet Measurements



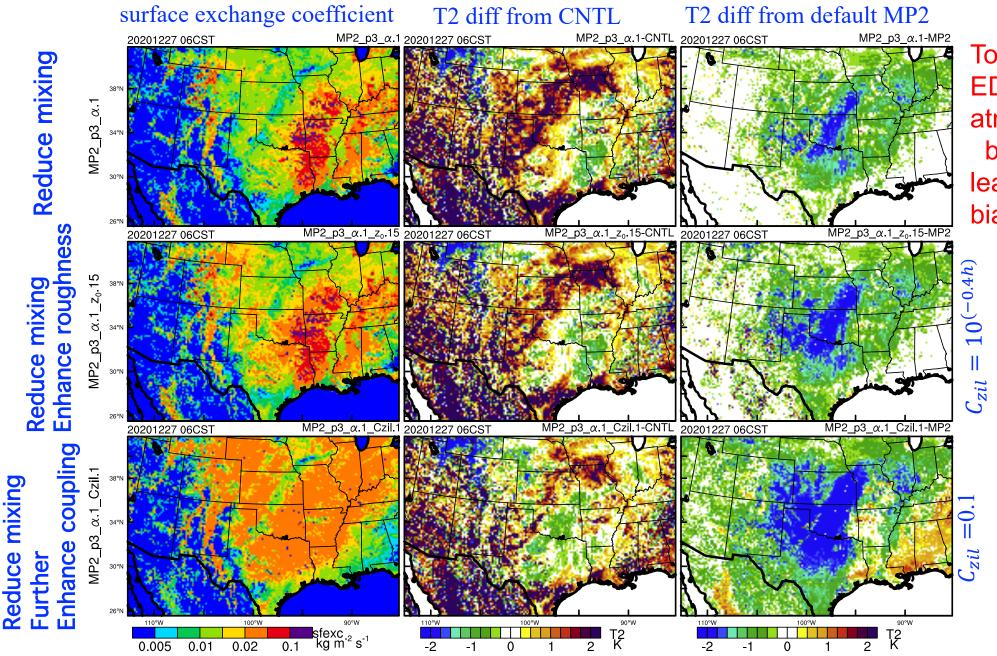
Ground flux

Soil moisture

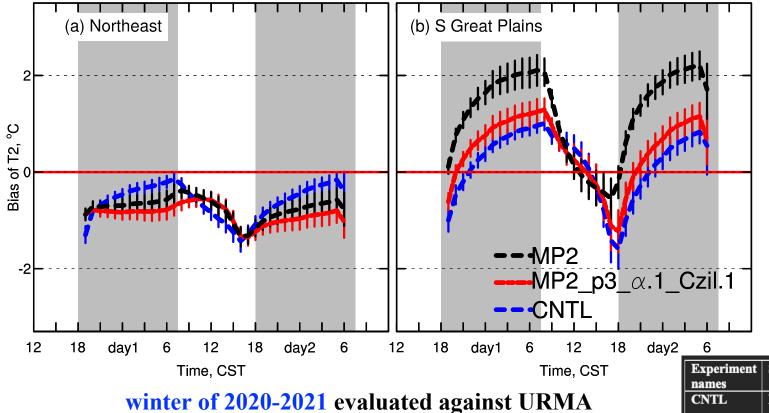
NoahMP in LSM2: lower soil water =>lower conductivity=>lower upward ground flux=>too cold over snow


T2 evaluation against Oklahoma Mesonet

Experiment names	Suite Characteristic	Microphysics	PBL	Surface Layer	LSM
CNTL	RRFS-control-like	Thompson	MYNN (<u>Olson et</u> <u>al., 2019a;</u> <u>Olson et al.,</u> 2019b)	MYNN (<u>Nakanishi</u> <u>& Niino,</u> 2009)	NOAH (<u>Chen & Zhang</u> , 2009)
LSM1	HRRR-like (Benjamin et al., 2016)	Thompson	MYNN	MYNN	RUC (Smirnova et al., 2016; Smirnova et al., 2000)
LSM2	future GFS-like	Thompson	TKE- EDMF (<u>Han &</u> <u>Bretherton,</u> 2019)	GFS (<u>Zheng et</u> <u>al., 2012</u>)	NOAH-MP (<u>Niu et al., 2011</u>)
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH
MP2	HWRF-like HAFS-like (Biswas et al., 2018)	Ferrier-Aligo	K-EDMF (<u>Han et al.,</u> 2016)	GFS (<u>Zheng et</u> al., 2012)	NOAH


Nighttime warm bias over the southern Great Plains from MP2 with K-EDMF and GFS surface layer scheme

Case study: Dec. 27, 2020


Too high PBL, and too strong near-surface temperature gradient from MP2 with K-EDMF and GFS surface layer scheme indicating model errors in vertical mixing and land-atmospheric coupling

MP2 sensitivity runs with different vertical mixing and land-atmospheric coupling

Too strong mixing by K-EDMF & too weak landatmospheric coupling by GFS surface layer lead to nighttime warm bias over grassland

MP2 sensitivity runs with different vertical mixing and land-atmospheric coupling

Too strong mixing by K-EDMF & too weak landatmospheric coupling by GFS surface layer lead to nighttime warm bias over grassland

Experiment	Suite Characteristic	Microphysics	PBL	Surface	LSM
names CNTL	RRFS-control-like	Thompson	MYNN (<u>Olson et</u> al., 2019a; Olson et al., 20101)	Layer MYNN (<u>Nakanishi</u> <u>& Niino,</u> 2009)	NOAH (Chen & Zhang, 2009)
LSM1	HRRR-like (Benjamin et al., 2016)	Thompson	2019b) MYNN	MYNN	RUC (Smirnova et al., 2016; Smirnova et al., 2000)
LSM2	future GFS-like	Thompson	TKE- EDMF (<u>Han &</u> <u>Bretherton</u> , 2019)	GFS (Zheng et al., 2012)	NOAH-MP (<u>Niu et al., 2011</u>)
MP1	WoFS-like	NSSL	MYNN	MYNN	NOAH
MP2	HWRF-like HAFS-like	Ferrier-Aligo	K-EDMF (<u>Han et al.</u> ,	GFS (Zheng et al. 2012)	NOAH

Conclusions

- Noah-MP simulates lower soil water content, and thus lower thermal conductivity, leading to smaller upward ground flux during nighttime and consequently lower surface temperature over snow.
- Overestimated vertical mixing strength from the K-EDMF PBL scheme and insufficient land-atmospheric coupling from the GFS surface layer scheme over short vegetation lead to nighttime warm bias in the Southern Great Plains.

Hu, X.-M., J. Park, T. Supinie, N. A. Snook, M. Xue, K. Brewster, J. Brotzge, J. R. Carley (2022), **Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for Multi-Physics Rapid Refresh Forecasting System (RRFS) Ensemble during Winter over the Northeastern US and Southern Great Plains**, *Mon. Wea. Rev.*, doi:<u>10.1175/MWR-D-22-0085.1</u>